ACID-CATALYSED HYDROLYSIS OF 1,2-0-ALKYLIDENEα-D-GLUCOFURANOSES

Wolfgang A R van Heeswijk, Johannes B Goedhart, and Johannes F G Vliegenthart Laboratory of Organic Chemistry, University of Utrecht (The Netherlanas) (Received July 28th, 1976, accepted for publication, November 10th, 1976)

ABSTRACT

The rates of acid-catalysed hydrolysis of 1,2-O-alkylidene-α-D-glucofuranoses indicate that, for oligosaccharide synthesis, cyclopentylidene and cycloheptylidene acetals are better protecting groups than the isopropylidene residue. Hydrolysis was impeded by a nitrate group at position 5 and more so by one at position 3. The hydrolyses were accompanied by a positive drift in optical rotation, except for the 5-O-substituted compounds where the formation of D-glucopyranose derivatives cannot occur.

INTRODUCTION

1,2-O-Isopropylidene- α -D-glucofuranose derivatives have been used in the synthesis of $(1\rightarrow 3)^{-1-5}$, $(1\rightarrow 5)^{-1-3-6-7}$, and $(1\rightarrow 6)$ -linked⁸ disaccharides. For the removal of the 1,2-O-isopropylidene group, various conditions have been described¹⁻⁶, but the yields of products never exceeded 75%. In a few cases²⁻⁴, the moderate yields of unsubstituted disaccharides have been ascribed to partial hydrolysis of the interglycosidic linkage.

In synthesising $(1\rightarrow 5)$ -linked disaccharides⁷, quantitative removal of the protecting groups from 5-O-(2-acetamido-2-deoxy- α -D-glucopyranosyl)-1,2-O-isopropylidene- α -D-glucofuranose by means of dilute, aqueous sulphuric acid also caused considerable rupture of the interglycosidic linkage. We have therefore investigated 1,2-acetals of enhanced acid-lability

RESULTS AND DISCUSSION

Reaction of D-glucofuranurono-6,3-lactone with a mixture of p-dioxane, cyclopentanone, and its diethyl acetal (generated in situ by using triethyl orthoformate) in the presence of mesitylenesulphonic acid gave the 1,2-O-cyclopentylidene derivative 2a The 1,2-O-cyclohexylidene (4) and 1,2-O-cycloheptylidene (8) derivatives were prepared in a similar manner

Reduction of 2a, 4, and 8 with borane in tetrahydrofuran gave the corresponding 1,2-O-cyclopentylidene (5a), 1,2-O-cyclohexylidene (6), and 1,2-O-cycloheptylidene (7) derivatives of α -D-glucofuranose as the main products

Since reductive cleavage of 1,3-dioxolanes to hydroxyethers by the borane-tetra-hydrofuran complex can occur⁹, the identities of 5a, 6, and 7 were confirmed by 1 H-n m r spectroscopy (Table I) In methyl sulphoxide- d_6 , the hydroxylic protons gave sharp doublets (HO-3 and HO-5) and triplets or quartets (HO-6), which disappeared on deuterium exchange Compound 6 has been prepared previously by an alternative route 10 .

Methanolysis of 5a, 6, and 7 gave glucose only (g l c -analysis 11) T l c. of the mother liquors revealed other components which were not further investigated.

Treatment of 2a with acetyl nitrate afforded 1,2-O-cyclopentylidene-α-D-gluco-furanurono-6,3-lactone 5-nitrate (2b), which was reduced with borane in tetrahydro-furan to give 1,2-O-cyclopentylidene-α-D-glucofuranose 5-nitrate (5b) The structures

TABLE I

 $^1\mathrm{H} ext{-}\mathrm{n}$ m r (90 MHz, Mc₂SO- d_6) data for 1,2- $^O ext{-}\mathrm{alkylidene}$ derivatives of $^a ext{-}\mathrm{d}$ glucofuranurono 6,3-lactones and $^a ext{-}\mathrm{d}$ -dlucofuranose

Br.1 Hr.2 Hr.3 Hr.4 Hr.5 $J_{1,2}$ $J_{3,4}$ $J_{4,3}$ HO-5 Alkylidine 2n 595 470 478 488 450 37 31 44 35 16,20 4 603 481 498 450 37 31 44 35 16,20 4 603 481 498 459 450 37 31 44 35 16,20 8 597 477 484 492 460 37 31 44 37 13-21 8 597 477 484 492 460 37 31 44 37 13-21 8n 592 487 492 460 37 31 46 44 119,137 3n 580 438 404 387 360 352 333 51 46 44 12-19 580 438 404	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	· ·				200		2007-260 00	A CAND PAR		30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		H-I	H-2	H-3	H-4	Н-5		J _{3 4}	J _{4,5}	Н0-5	Alkylıden	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29	5 95		4 78	4 88				4 4		16,20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 p	6 01		5 01	5 19				44		14.21	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6 03		4 88	4 98				43		12-19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$	5 97		4 84	4 92				44		13-21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		H-I		Н-3	H-4	Н-5	Н-6а	49-Н	НО-3	НО-5	9-OH	Alkylıdene
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3а			4 04	3 87	3 69	3 52	3 33	5.1	46	44	1 19, 1 37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3b			5 32	4 22	←3 5	3 7→ ^b	3.31	a	51	46	127, 144
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5a			4 07	3 88	3 69	3 57	3 33	5 1	46	44	14-19
580 437 404 385 367 356 332 51 46 44 1 1 576 431 406 383 366 354 331 51 46 44 1 1 576 357 31 31 31 31 31 31 31 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sb			4 03	4 17	5 27	3 84	3 59	57	a	51	1 3-1 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$J_{1,2}^{d}$ $J_{3,4}$ $J_{4,5}$ $J_{5,6a}$ $J_{5,6b}$ $J_{5,6b}$ $J_{5,0H}$	9			4 04	3 85	3 67	3 56	3 32	51	46	44	1 2-1 7
J _{1,2} ^d J _{3,4} J _{4,5} J _{5,6} J _{6,6} J _{5,011} J _{6,011} <td>J_{1,2}^d J_{3,4} J_{4,5} J_{5,6}b J_{6,6}b J_{3,011} J_{5 011} J_{6,011} 37 24 81 28 58 -115 48 54 57 39 33 89 a 60 -117 a 56 56 38 24 82 27 60 -114 53 54 59 38 30 80 27 57 -129 53 a 62 38 24 82 27 57 -129 53 a 62 38 24 82 27 58 -115 48 55 c 37 24 82 25 59 -114 48 55 57</td> <td>7</td> <td></td> <td></td> <td>4 06</td> <td>3 83</td> <td>3 66</td> <td>3 54</td> <td>3 31</td> <td>5.1</td> <td>46</td> <td>44</td> <td>12-19</td>	J _{1,2} ^d J _{3,4} J _{4,5} J _{5,6} b J _{6,6} b J _{3,011} J _{5 011} J _{6,011} 37 24 81 28 58 -115 48 54 57 39 33 89 a 60 -117 a 56 56 38 24 82 27 60 -114 53 54 59 38 30 80 27 57 -129 53 a 62 38 24 82 27 57 -129 53 a 62 38 24 82 27 58 -115 48 55 c 37 24 82 25 59 -114 48 55 57	7			4 06	3 83	3 66	3 54	3 31	5.1	46	44	12-19
J _{1,2} ^d J _{3,4} J _{4,5} J _{5,6} J _{6,8} J _{6,8} J _{5,9} J _{8,9} J _{8,}	J _{1,2} ^d J _{3,4} J _{4,5} J _{5,6} J _{6,6} J _{5,011} J _{5,011} J _{5,011} J _{6,011} 37 24 81 28 58 -115 48 54 57 39 33 89 a 60 -117 a 56 56 38 24 82 27 60 -114 53 54 59 38 30 80 27 57 -129 53 a 62 38 24 82 27 58 -115 48 55 c 37 24 82 25 59 -114 48 55 57												
J _{1,2} ^d J _{3,4} J _{4,5} J _{5,6} J _{0,6} J _{0,0} J _{5,011} J _{6,011} J _{6,}	J _{1,2} ^d J _{3,4} J _{4,5} J _{5,6} J _{0,0} J _{0,0} J _{5,01} J _{5,01} J _{5,01} J _{6,01} 37 24 81 28 58 -115 48 54 57 39 33 89 a 60 -117 a 56 56 38 24 82 27 60 -114 53 54 59 38 30 80 27 57 -129 53 a 62 38 24 82 27 58 -115 48 55 c 37 24 82 25 59 -114 48 55 57											!	,
37 24 81 28 58 -115 48 54 57 5 39 33 89 " 60 -117 " 56 56 5 38 24 82 27 60 -114 53 54 59 5 38 30 80 27 57 -129 53 " 62 5 38 24 82 27 58 -115 48 55 ° ° 37 24 82 25 59 -114 48 55 57 5	37 24 81 28 58 -115 48 54 57 5 39 33 89 " 60 -117 " 56 56 5 38 24 82 27 60 -114 53 54 59 5 38 30 80 27 57 -129 53 " 62 5 38 24 82 27 58 -115 48 55 " " 37 24 82 25 59 -114 48 55 57 5		$\mathbf{J}_{1,2}^{d}$	J _{3 4}	J _{4,5}		J _{5,6b}	Jeasb	Јз,он	J _{s oli}	J _{6a,011}	$J_{6b,0H}$	
39 33 89 " 60 -117 " 56 56 38 24 82 27 60 -114 53 54 59 5 38 30 80 27 57 -129 53 " 62 5 38 24 82 27 58 -115 48 55 " " 37 24 82 25 59 -114 48 55 57 5	39 33 89 " 60 -117 " 56 56 5 38 24 82 27 60 -114 53 54 59 5 38 30 80 27 57 -129 53 " 62 5 38 24 82 27 58 -115 48 55 ° ° 37 24 82 25 59 -114 48 55 57 5	3a					58			84	5.7	5.7	
38 24 82 27 60 -114 53 54 59 5 38 30 80 27 57 -129 53 a 62 5 38 24 82 27 58 -115 48 55 c c 37 24 82 25 59 -114 48 55 57 5	38 24 82 27 60 -114 53 54 59 5 38 30 80 27 57 -129 53 a 62 5 38 24 82 27 58 -115 48 55 c c 37 24 82 25 59 -114 48 55 57 5	3b					09	-1117		56	56	53	
38 30 80 27 57 -129 53 4 62 5 38 24 82 27 58 -115 48 55 c c 37 24 82 25 59 -114 48 55 57 5	38 30 80 27 57 -129 53 ° 62 5 38 24 82 27 58 -115 48 55 ° ° ° 37 24 82 25 59 -114 48 55 57 5	5a					09	-114	53	54	59	59	
38 24 82 27 58 -115 48 55 ° ° 37 24 82 25 59 -114 48 55 57 5	38 24 82 27 58 -115 48 55 ° ° ° 37 24 82 25 59 -114 48 55 57 5	5b					5.7	- 12 9	53	ø	62	53	
37 24 82 25 59 -114 48 55 57 5	37 24 82 25 59 -114 48 55 57 5	9					58	-115	4 8	5.5	ŭ	v	
		7					59	-114	8 4	5.5	57		

^aNot present ^bComplex multiplet ^cPartially masked by H-2 resonances ⁴J_{1 3} spacings in all compounds studied were <0 3 Hz

of 2b and 5b were confirmed by ¹H-n m r spectroscopy (Table I), the nitrate ester causes a large downfield-shift of the H-5 doublet in 2b as well as of the H-5 multiplet in the reduced compound 5b

1,2-O-Isopropylidene- α -D-glucofuranose 3-nitrate (3b) was obtained by treatment of 1,2 5,6-di-O-isopropylidene- α -D-glucofuranose (1a) with acetyl nitrate followed by selective hydrolysis of the 5,6-O-isopropylidene group. The 1 H-n m r data for 3b are given in Table I

The acid-catalysed hydrolysis of cyclic acetals involves an A-1 mechanism¹²⁻¹⁵ For 1,2-O-alkylideneglucofuranoses, protonation of the 1,3-dioxolane oxygen atoms is followed by unimolecular heterolysis, with the formation of a transition state having much carbonium-ion character¹⁵ Water adds rapidly to yield glucose and the ketone

The hydrolyses of **3b**, **5a**, **5b**, **6**, and **7** in acidified, aqueous propan-2-ol were followed polarimetrically, the compounds are insufficiently soluble in aqueous acid Good first-order plots were obtained, and $t_{0.5}$ values are given in Table II T1c showed that no 2-propyl glucosides or other species were formed

TABLE II
half-lives (h) of 1 2-O-alkylidene- $lpha$ -d-glucofuranoses and derivatives thereof

Compound	0 53M H ₂ SO ₄ in water-propan-2-ol (65 35) ^a	Compound	0 52M H ₂ SO ₄ in water ^b
3a	19 68	3a	5 47ª
3b	92 9	$3c^3$	3 2 ^c
5a	7 78	3d7	5 6ª
5b	11 27		
6	124 1		
7	9 53		

 a At 193, deviation from the mean <2% b At 200°, estimated error 10% c Recalculated to be valid at an H_{0} value of +0.11 d The rate was determined by time-dependent quantitative g1c after trimethylsilylation estimated error 20%

The rate for 3a is considerably larger in aqueous acid than in the mixed solvent (Table II) No data are available for Hammett's acidity function $(H_0)^{13}$ of sulphuric acid in propan-2-ol-water mixtures. However, Braude and Stern 16 demonstrated that $-H_0$ went through a minimum with changing water content at a fixed concentration of mineral acid in ethanol, p-dioxane, and acetone. Similar behaviour for acidified propan-2-ol-water mixtures would be expected

The nitrate group at position 3 resulted in a marked decrease of the rate $(k_{3a}|k_{3b}=4.76)$, whereas the same substituent at C-5 has little effect $(k_{5a}|k_{5b}=1.45)$ Electron-withdrawing substituents in the sugar moiety may affect the overall rate by (a) lowering the standing concentration of the conjugate acid, and (b) facilitating or retarding the unimolecular heterolysis, depending on the site of protonation. These effects cancel out in the overall rate in related, acid-catalysed, hydrolytic systems 14.17

The isopropylidene group in 3b is almost as stable as the cyclohexylidene group in 6, yet it can be removed under milder conditions after removal of the nitrate ester

The cyclopentylidene (5a) and cycloheptylidene (7) acetals hydrolyse more rapidly than the cyclohexylidene acetal (6) The differences in the rates of hydrolyses of related cyclic acetals have been discussed ^{12 15} in terms of changes of ring-torsional and bond-angle strains in the transition state However, cycloheptylideneuridine hydrolyses faster than cyclopentylideneuridine ¹², whereas the reverse order of reactivity holds true in the present series. This finding strongly indicates that the changes in bond angle in the transition state are mediated by the sugar moiety and do not follow the general trend ¹² for the diethyl acetals of the ketones

If HO-5 is blocked ($\mathbb{R}^2 \neq \mathbb{H}$), as in the monosaccharide derivatives 5b and in the $(1 \rightarrow 5)$ -linked disaccharides $3c^3$ and $3d^7$, a glucopyranose derivative cannot be formed and there is a negative drift in optical rotation during the reaction $^1\text{H-N}$ m r spectroscopy of the $(1 \rightarrow 5)$ -linked disaccharides in deuterium oxide demonstrated that both anomeric furanose forms were present in about equal amounts 7 19 Thus, the observed molecular rotation roughly equals its B value $(0.5[\text{M}]_x + 0.5[\text{M}]_B)$ In accordance with Hudson's rule, the molecular rotation of a $(1 \rightarrow 5)$ -linked disaccharide should be considerably lower than the values for the respective $(1 \rightarrow 2)$ -, $(1 \rightarrow 3)$ -, $(1 \rightarrow 4)$ -, and $(1 \rightarrow 6)$ -linked pyranoid analogues (cf. Ref. 18)

EXPERIMENTA1

General methods — Melting points were determined on a Mettler FP5/FP51 photoelectric melting-point apparatus Specific rotations were determined at ambient temperature with a Perkin-Elmer 141 Polarimeter 1 H-N m r spectra (internal Me₄Si) were recorded with Varian EM360 and EM390 spectrometers, and i r spectra with a Pye Unicam SP1100 spectrophotometer Solutions were concentrated at 40° (bath)/ \sim 12 mmHg T1c was performed on silica gel (Schleicher & Schull T L C Ready Plastic Foil FR-1500), with conventional detection by charring with sulphuric acid Column chromatography was performed on silica gel (Merck Kieselgel 60 230–400 mesh) with A, ethyl ether, B, ethyl ether—light petroleum (b p 40–60°) (1 3) and C, as in B, ratio 3 1

Kinetic methods — Reactions were followed at 546 nm by using a Zeiss precision polarimeter. Jacketed tubes were used to ensure a constant temperature $(\pm 0.1^\circ)$ Half lives $(t_{0.5}, h)$ were computed by regression analysis of $\ln |\alpha_t - \alpha_x| \iota ersus$ time (t) straight-line plots using a Hewlett-Packard 9100B calculator. The method of Guggenheim²⁰ gave the same results. In most cases, the optical rotations to be expected at infinite time were checked by actual measurements.

A poor correlation constant (r) and a large standard-deviation on $t_{0.5}$ was obtained for 3d Therefore, the rate for 3d was calculated by measuring peak areas in g l c after trimethylsilylation⁷

1,2-O-Cycloalky lidene derivatives of α -D-glucofurantiono-6,3-lactone — (a) Freshly distilled cyclopentanone (60 ml) was added dropwise to a stirred solution

(0°) of mesitylenesulphonic acid (1 g) in p-dioxane (100 ml) and triethyl orthoformate (15 ml). The mixture was then kept at room temperature for 2 h. Finely powdered p-glucofuranurono-6,3-lactone (10 g, 56 8 mmol) was added, and the suspension was vigorously stirred until a clear solution was obtained (24-48 h). The solution was neutralized with triethylamine, and concentrated A solution of the syrupy residue in chloroform (100 ml) was washed with water (100 ml). The aqueous layer was extracted with chloroform (3 × 50 ml). The combined chloroform layers were dried (MgSO₄), treated with decolourizing carbon, filtered through diatomaceous earth, and concentrated. Treatment of the residue with ethyl ether afforded crystalline 2a. The mother liquor was chromatographed on a column of silica gel (solvent A) to give more 2a. Recrystallisation from ethanol gave 1,2-O-cyclopentylidene- α -D-glucofuranurono-6,3-lactone (2a, 8 3 g, 60%), m. p. 112 5-114 5°, [α]_D +53° (c 6, chloroform), $\nu_{\text{max}}^{\text{LBr}}$ 3420 (OH, sharp) and 1780 cm⁻¹ (C=O, lactone) (Found C, 54 45, H, 5 88, O, 38 98 $C_{11}H_{14}O_6$ calc. C, 54 54, H, 5 83, O, 39 63%)

The ¹H-n m r data (Table I) were consistent with the allocated structure

(b) Using a procedure similar to that in (a), but with 60 ml of cyclohexanone, 1,2-O-cyclohexylidene- α -D-glucofuranirono-6,3-lactone (4, 3 8 g, 26%) was obtained, mp 145-146° (from ether-hexane), $[\alpha]_D$ +47° (c 2 6, chloroform), v_{max}^{RBr} 3450 (OH, sharp) and 1780 cm⁻¹ (C=O, lactone) (Found C, 56 41, H, 6 25, O, 36 82 $C_{12}H_{16}O_6$ calc C, 56 25, H, 6 29, O, 37 46%)

For ¹H-n m r data, see Table I

(c) Using a procedure similar to that in (a), but with 40 ml of cycloheptanone, 1,2-O-cycloheptylidene- α -D-glucofuranurono-6,3-lactone (8, 8 5 g, 55%) was obtained, m p 121 5–122° (from ether-hexane), $[\alpha]_D + 48^\circ$ (c 3, chloroform), v_{max}^{KBr} 3415 (OH sharp) and 1780 cm⁻¹ (C=O, lactone) (Found C, 57 77, H, 6 70, O, 35 53 $C_{13}H_{18}O_6$ calc C, 57 77, H, 6 71, O, 35 52%)

For ¹H-n m r data, see Table I

1,2-O-Isopropylidene- α -D-glucofuranose 3-nitrate (3b) — A solution of acetyl nitrate [prepared at -15° from fuming nitric acid (8 ml, sp gr 1 50) and acetic anhydride (20 ml)] was added dropwise with stirring to a suspension of 1a (20 g, 77 mmol) in acetic anhydride (45 ml). The temperature was kept below 0° After a further 10 min at 0°, the solution was poured into ice-water (750 ml). The oil which separated was dissolved in ether (200 ml), and the solution was successively washed with 100-ml portions of ice-water, cold 15% aqueous potassium carbonate (2 ×), and water, then dried (MgSO₄), and concentrated to give 1,2 5,6-di-O-isopropylidene- α -D-glucofuranose 3-nitrate (1b, 23 g, 98%), as an oil, $[\alpha]_D = 38^{\circ}$ (c 3, chloroform), which contained acetic anhydride, ether, and other products, but was suitable for the preparation of 3b

A mixture of 1b (23 g, 75 mmol), methanol (110 ml), and 0.5% aqueous sulphuric acid (50 ml) was stirred vigorously until the solution became clear (\sim 20 h) T l c (solvent C) after 40 h indicated the presence of 1b and p-glucose 3-nitrate ($R_{\rm F}$ 00) in about equal, but small, amounts The solution was neutralized with

Dowex 1 X 2 (HO⁻) resin, filtered and concentrated A solution of the resulting, clear syrup in ethyl ether was treated with silicic acid (0 5 g) to remove D-glucose 3-mirate and water, filtered, and diluted with hexane to give 3b (17 g, 85%), m p 70–70 5°, $[\alpha]_D$ –25° (c 2, p-dioxane), v_{max}^{kBr} 3450, 3500 (OH, sharp). 1640, and 1275 cm⁻¹ (nitrate) (Found C, 40 90, H, 5 83, N, 5 19 C₉H₁₅NO₈ calc C, 40 76, H, 5 70, N, 5 28%)

For ¹H-n m r data, see Table I

1,2-O-Cyclopentyludene- α -D-glucofuranurono-6,3-lactone 5-nitrate (2b) — A solution of acetyl nitrate [prepared from nitric acid (1 ml) and acetic anhydride (4 ml)] was added to a solution of 2a (2 4 g, 10 mmol) in acetic anhydride (6 ml) The mixture was kept at 0° for 10 min, then poured into ice—water (100 ml), and vigorously shaken for 5 min The product was collected, washed with ice—water, and dried over KOH *in vacuo* to give 2b (2 5 g, 88%), m p 112–113° (from chloroform—ether), $[\alpha]_D + 76^\circ$ (c 3, chloroform), ν_{max}^{KBr} 1800 (C=O, lactone), 1650 and 1275 cm⁻¹ (nitrate) (Found C, 46 05, H, 4 51, N, 4 69, O, 44 48 C₁₁H₁₃NO₈ calc C, 46 00, H, 4 56, N, 4 88, O, 44 56%).

For ¹H-n m r data, see Table I

1,2-O-Cyclopentyludene- α -D-glucofuranose (5a) — A solution of 2a (48 g (20 mmol)) in dry tetrahydrofuran was flushed with nitrogen and cooled to -60° M Borane in tetrahydrofuran (38 ml) was slowly added with stirring at below -40° The mixture was allowed to reach room temperature in 3 h, methanol was then added to destroy the excess of borane, and the solution was concentrated Boric acid was removed from the residue by evaporation of methanol three times therefrom Crystallization of the product from ethanol-light petroleum (b p 40-60°) afforded 5a (2 5 g, 51%), m p 163-164°, [α]_D +6° (c 3, p-dioxane) (Found C, 53 50, H, 7 41, O, 39 08 C₁₁H₁₈O₆ cale C, 53 63, H, 7 37, O, 38 98%)

For ¹H-n m r data, see Table I

1,2-O-Cyclohexylidene- α -D-glucofuranose (6) — Compound 4 (5 g, 20 mmol) was reduced, as described for 2a, to give 6 (2 4 g, 47%), m p 151-151 5° [from ethanol-light petroleum (b p 40-60°)], $[\alpha]_D$ +2 5° (c 3, p-dioxane), lit ¹⁰ m p 152-153°, $[\alpha]_D$ +4° (acetone)

For ¹H-n m r data, see Table I

1,2-O-Cycloheptyludene- α -D-glucofuranose (7) — Compound 8 (5 4 g, 20 mmol) was reduced, as described for 5a, to give 7 (4 55 g, 83%), mp 151 5–152 5° (dec.) [from ethanol-light petroleum (b p 40–60°)], $[\alpha\bar{j}_D^{50} + 6^\circ$ (c 3, p-dioxane) (Found C, 56 72, H, 8 08, O, 35 08 $C_{13}H_{22}O_6$ calc C, 56 92, H, 8 08, O, 34 99%)

For ¹H-n m r data, see Table I

1,2 O-Cyclopentylidene- α -D-glucofuranose 5-nitrate (5b) — A solution of 2b (4 3 g, 15 mmol) in tetrahydrofuran (15 ml) was reduced with borane-tetrahydrofuran complex (22 ml), and further processed as described for 5a, to give 5b, (4 1 g, 94%), mp 118-119° (from ethyl acetate-hexane), $[\alpha]_D + 7^\circ$ (c 3, chloroform), $v_{\text{max}}^{\text{NBr}}$ 3450 (OH, sharp), 1640 and 1275 cm⁻¹ (nitrate), no lactone absorption was observed

(Found C, 45 01, H, 5 94, N, 4 55, O, 43 21 C₁₁H₁₇NO₈ calc C, 45 36, H, 5 88, N, 4 81, O, 43 95%)

For ¹H-n m r data, see Table I

ACKNOWLEDGMENTS

We thank Mr A V E George and Mr D Seykens for recording the 90-MHz ¹H-n mr spectra, Dr D Knol and Dr R J M Nolte for helpful discussions, and Mr F R Wassenburg for valuable assistance This investigation was supported by the Netherlands Foundation for Chemical Research (S O N) with financial aid from the Netherlands Organisation for the advancement of pure Research (Z W O)

REFERENCES

- 1 N K Kochetkov A F Bochkov T A Sokolovskaya, and V I Snyatkova, *Carbohydr Res* , 16 (1971) 17–22
- 2 P BACHLI AND E G V PERCIVAL J Chem Soc (1952) 1243-1246
- 3 K FREUDENBERG AND K OERTZEN Ann 574 (1951) 37-53
- 4 S HAQ AND W J WHELAN J Chem Soc , (1958) 1342-1346
- 5 R U LEMIEUX K JAMES, AND T L NAGABHUSHAN, Can J Chem, 51 (1973) 42-52
- 6 G Maghuin-Rogister, Bull Soc Chim Belg, 77 (1968) 575-578
- ⁷ W A R VAN HEESWIJK P DE HAAN, AND J F G VLIEGENTHART, Carboli, dr Res., 48 (1976) 187–196
- 8 K MATSUDA AND T SEKIGUCHI, J Agr Chem Soc Japan, 33 (1959) 1154-1156, Chem Abstr 59 (1963) 6494
- 9 B FLEMING AND H I BOLKER Can J Chem 52 (1974) 888-893
- 10 R C HOCKETT, R E MILLER, AND A SCATTERGOOD, J Am Chem Soc, 71 (1949) 3072-3076
- 11 J P KAMERLING G J GERWIG, J F G VLIEGENTHART, AND J R CLAMP, Biochem J, 151 (1975) 491-495
- 12 A HAMPTON, J C FRATANTONI, P M CARROLL AND S WANG J Am Chem Soc 87 (1965) 5481-5487
- 13 M A PAUL AND F A LONG, Chem Ret 57 (1957) 1-42
- 14 B CAPON W G OVEREND AND M SOBELL Tetrahedron 16 (1961) 106-112
- 15 M M Kreevay, C R Morgan, and R W Taft, Jr., J Am Chem Soc., 82 (1960) 3064-3066
- 16 E A BRAUDE AND F S STERN, J Chem Soc, (1948) 1976-1981
- 17 T E TIMELL, Can J Chem, 42 (1964) 1456-1472
- 18 J STANĚK, M ČERNY, J KOCOUREK, AND J PACAK, *The Monosaccharides*, Academic Press, New York 1963, pp 50-54
- 19 W A R VAN HEESWIJK, J B GOEDHART F WASSENBURG, AND J F G VLIEGENTHART, unpublished results
- 20 E A GUGGENHEIM AND J E PRUE, *Physicochemical Calculations*, North-Holland, Amsterdam, 2nd edition, 1964 pp 442-444